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1. Introduction 

It is a pleasure to dedicate this paper to Roger Penrose. It is also, in our view, 
very appropriate: the main technique, the Newman-Penrose complex null tetrad 
method, comes from one of  his best known and most widely used papers [ l ]; the 
spinor formulation of  the Petrov classification of  the Weyl tensor was discussed 
in another paper of  his [2 ]; the spaces considered, since they are Einstein spaces, 
are related to LeBrun's Einstein bundle [3 ], which arises in Penrose's twistor 
theory [4] (though we have not attempted to make this link explicit); finally, if 
we may be forgiven for teasing our dedicatee, this paper has one feature in com- 
mon with some of his best known work--namely, a gestation period measured in 
decades! [ 5 ]. 

Homogeneous and hypersurface-homogeneous spacetimes in general relativity 
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are characterized by admitting a group of isometries Gr with r parameters, where 
3 ~< r~< 10, and if r=  3 we must add that the group acts on three-dimensional or- 
bits. This apparently large set of  possibilities rapidly reduces to the consideration 
of just the G3 case :  Einstein spaces with larger groups are already known (see ref. 
[6 ], section 9.2, for details and references), and are listed in section 9. 

Thus to complete a study of  homogeneous or hypersurface-homogeneous alge- 
braically special Einstein spaces we have only to consider those admitting a group 
of motions G3, which we can take to be simply transitive (relevant multiply tran- 
sitive possibilities have been considered in refs. [ 7-9 ] ). There are two possibili- 
ties: either the homogeneous hypersurfaces contain the repeated principal null 
direction (PND),  or they do not. The second case was considered earlier by one 
of us [ I0] (with some help from the other), and the new work described in the 
present paper complements ref. [ I0] by considering the first case, which is a 
subset of Kundt's class [6, ch. 27 ]. 

Related solutions with less symmetry have been considered by Kramer [ 11 ], 
who considered cases with a null Killing vector; Bampi and Cianci [ 12], who 
took a G2 acting on null surfaces *; and Hoffman [ 13 ], who considered a G2 on 
timelike surfaces (i.e. stationary axisymmetric spacetimes). All these authors 
solved only the vacuum case. Barnes [9] considered a G 3 acting on null two- 
surfaces and gave the general Einstein space solution. Harness [ 14 ] found some 
algebraically special solutions in the course of his investigation of metrics with a 
G3 acting on timelike hypersurfaces. Hoffman's S-class and the first set of solu- 
tions of Bampi and Cianci are special cases of K.ramer's. Finally, some of the 
Petrov type N solutions in the present class are "Lobatchevski plane gravitational 
waves" [ 15 ], which can be defined as non-vacuum Petrov type N spaces which 
are conformal to pp-waves. 

Because all G 3 except those of types VIII and IX contain an Abelian G2, almost 
all of our solutions have two commuting Killing vectors, and so can be considered 
as examples of  stationary axisymmetric or cylindrically symmetric spacetimes, or 
Bampi and Cianci's null surface analogues. However, unlike the spatially homo- 
geneous cases (see ref. [ 10] ) or the cases with genuine axes of symmetry (see 
ref. [6], section 17.2), the Abelian G2 need not act on orthogonally transitive 
two-surfaces. 

When the homogeneous hypersurfaces contain the repeated PND, they could 
be null or timelike. The null hypersurface case is considered in ref. [6 ], section 
21.2, and leads only to plane waves and spaces of constant curvature. Thus our 
task here is to obtain all algebraically special Einstein spaces with homogeneous 
timelike hypersurfaces containing the repeated PND. In section 2 we set out the 
system of equations to be used; in section 3 we integrate as far as possible without 
considering the possible Petrov types separately; in sections 4-7 we consider the 

* We intend to publish elsewhere, in collaboration with G.C. Joly, a note on these metrics. 
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different Petrov types in turn, and in section 8 we give the form of the metric. 
Some of the more tedious details are omitted. Section 9 contains a full list of the 
solutions possible, including those obtained elsewhere, and some concluding 
remarks. 

2. Setting up the problem 

2.1. CHOICE OF THE TETRAD 

Let (k, 1, m, th ) be a Newman-Penrose null tetrad, with corresponding differ- 
ential operators (D, ,4, 8, ~-) (see ref. [6 ] ), where k is the repeated principal null 
direction so that ~o = 7J~ = 0. At one point in each homogeneous hypersurface, we 
choose I and m -  th to be tangent to the hypersurface, so that m + n~ is normal to 
it. These vectors are then dragged round the hypersurface by the action of the 
group. This implies that all the scalars derived from the tetrad vectors (the spin 
coefficients and the Riemann tensor components, for example) are functions only 
of a coordinate x which labels different homogeneous hypersurfaces. 

Using this condition in the commutators [ 1 ] provides the following relations: 

Im(p+2~)  = I m ( / t - 2 - 2 y )  = R e ( z +  r~) 

= R e ( p )  = R e ( / t + 2 ) =  I m ( a +  f l ) = 0 .  (2.1) 

The first three of these relations come from the conditions that D, J,  and d -  ~-are 
surface forming and the other three from the hypersurface orthogonality of J +  ~.. * 
The commutators of D, '4, and d - ~ c a n  be used to classify the group into one of 
the Bianchi types in the usual way (see ref. [6], section 8.2). 

We still have the freedom to use an x-dependent null rotation about k in the 
plane of (k, m-n~)  and an x-dependent boost in the (k, l) plane. Under the null 
rotation, 2 +/~ transforms by 

2 + It-,2 + lt+ 2 i u ( a +  fl) +2i&~, 

where u is the (real) "angle" of the null rotation. Under the boost, 

ot + fl~ot + fl+ ~(log A ) , 

where A is the (real) boost parameter. Since already, according to (2.1), 2 +/z is 
imaginary and a + fl is real, these freedoms can be used to set 

2 + i t = 0 ,  c~+f l=0 .  (2.2) 

Note that we cannot use the tetrad freedom to put the reciprocal group corn- 

* From the point of view of the commutators, it is not known that ~+b ' i s  orthogonal to .4, D and 
t~-~, so the first three conditions are independent of the second three. 
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mutators into canonical form because we have insisted on using the principal null 
direction as one of the basis vectors *. 

2.2. STRUCTURE OF THE NEWMAN-PENROSE EQUATIONS 

To understand how to proceed, it helps to examine the structure of the 
Newman-Penrose equations. If one writes down the definitions of connection 
and curvature in Cartan's form, 

do)i= - o ) ~ ^  a / ,  (2.3) 

do)5 + o)ik ̂  co~= Rii , (2.4) 

then the integrability conditions of the first set, eqs. (2.3), i.e. dZo)*=0, yield the 
first Bianchi identities, 

(do)5+o)ik A O) k,) ^ o.r/=0, (2.5) 

which can equally well be thought of as the Jacobi identities for the basis of tan- 
gent vectors dual to {o)"}. The integrability conditions of (2.4), " d-o) j=0,  yield 
the (second) Bianchi identities, 

d R S - R '  k A o)~+ o)'k A R k =  0.  (2.6) 

The conditions (2.5) give 16 real equations, while eqs. (2.4) define the 20 inde- 
pendent components of the Riemann tensor in terms of the connection. In the 
Newman-Penrose formalism, these 36 real equations become the 18 complex 
equations labelled (4.2a)-(4.2r)  in ref. [ 1 ], which we will refer to generically as 
the NP equations (although they are not the only equations in ref. [ l ] ! ) or sep- 
arately by the names ( N P a ) - ( N P r ) ,  while eqs. (2.3) are the commutators, eqs. 
(4.4) in ref. [ 1 ], and the conditions (2.6) are the Bianchi identities, eqs. (4.5) 
in ref. [ 1 ] (for Einstein spaces) or eqs. (7.61)-(7.71 ) in ref. [6] (for general 
energy-momentum ). 

If one starts with a co-frame {o)i}, then the conditions (2.5) are automatically 
satisfied because of the definition (2.3). However, if one starts with a set of spin 
coefficients, then (2.5) will give restrictions which ensure integrability, i.e. the 
existence of a co-frame. In particular, if we use the basis freedom to choose the 
value of some of the spin coefficients, then further consequences will follow from 
eq. (2.5), or equivalently, from the combinations of the NP equations which do 
not involve the Riemann tensor components. Thus, if we use the freedom of basis 
choice to put the spin coefficients in a nice form, it is ( N P a ) - ( N P r )  which will 
probably be best used first. 

Similarly, if one starts with a set of spin coefficients, then (2.6) are automati- 

* In any case, the canonical forms are not quite so convenient in the timelike case, when the isotropy 
group is SO(2,1 ) instead of SO(3) [ 16]. 
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cally satisfied, because of definition (2.4). However, if we place restrictions di- 
rectly on the Riemann tensor components (by choosing the Petrov type, or the 
tetrad components of the curvature), then further consequences follow from the 
Bianchi identities (2.6). In particular, if eq. (2.4) is no longer identically satis- 
fied, then the integrability condition d 2 R ~ =  0 for (2.6) may provide non-trivial 
relations (which Brans [ 17] refers to as "post-Bianchi identities"; Kinnersley 
[ 19 ] used them in the form of commutators applied to ~g2). Thus if one begins 
by putting the Riemann tensor in a nice form, it is the Bianchi identities which 
are most likely to yield helpful information *. 

Using the tetrad freedom to eliminate Riemann tensor components is usually 
a good plan, since it often fixes the frame completely, whereas choosing spin coef- 
ficients often leaves a freedom of some constant Lorentz transformations. 

3. Integrating the equations 

In the present problem, the restriction ~Uo= ~ = 0 substituted into the Bianchi 
identities immediately yields x = a = 0  (which is of course the Goldberg-Sachs 
theorem) and this together with the earlier restrictions (2.1) on the spin coeffi- 
cients, gives p=0 ,  e=d-on using (NPa).  The specializations so far can be sum- 
marized as 

~ o = T i  = 0 ,  o t= - - f l ,  I m ( ~ ) = O ,  

x = 0 ,  2 =  - / ~ ,  Im(/z) = I m ( y ) ,  

p = 0 ,  a = 0 ,  R e ( z + n ) = 0 ,  

(3.1) 

and we have to solve for r, y, p, v, n and z, and, of course, the remaining ~UA. 
In the appendix we give the form of the remaining non-trivial NP equations, 

Bianchi identities, and commutators with these specializations: the commutators 
are written in terms of D, A, 6 - ~ ,  and 6 + r s i n c e  the first three of these are the 
reciprocal group generators, and the non-trivial Bianchi identities are numbered 
(B 3 ) -  ( B8 ), according to their position in eq. ( 4.5 ) of ref. [ 1 ]. 

First we show that e=0  in all cases except Petrov type D. ( N P h ) +  
(NPp) + (NPq)  - (NPg) gives 

n f f - n  2 - z f+  z 2 + 2 ( n + Q  (fl+/7) =4~/~, (3.2) 

while ( B 4 ) +  (B5) is 

(z+n) T,_ =2eT3. (3.3) 

We need only consider the case ~u2 # 0, since in Petrov types III and N the Bianchi 

* Related remarks about the division of the Newman-Penrose equations into definitions and inte- 
grability conditions appear in a series of papers by Papapetrou, e.g. ref. [ 18 ]. 
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identities ( B 5 ) or ( B 7 ), respectively, imply (trivially) that E = 0. Equation ( 3.3 ) 
means, according to ( 3.1 ), that ~2 is an imaginary multiple of ~3. Furthermore, 
it follows from (NPp)  - (NPq)  - (NPg) - (NPh) ,  on using the fact that 3+n  is 
imaginary to eliminate ~, that 

28 log( 3+ n) = - (rr+ r~). 

A comparison with the real part of (NPe) shows that, if e#0 ,  then (3+rr)/E is 
constant. We can therefore use the remaining null rotation freedom 

~tt3 ---~ ~-t3 + 3iu ~ttt 2 (3.4) 

to set ~3=0. Then (B6) implies/z=0, in which case E=0 by (B7) and the argu- 
ment is complete. 

The type D metrics with e ~ 0 are all well known, being generalizations of 
Kinnersley's vacuum cases [ 19 ] to A ~ 0, or solutions of the Robinson-Bertotti  
form given as eq. (10.8) in ref. [6], and will not be considered in detail here. 

We will therefore a s s u m e  henceforth  that ~ = O. 
The real part of  (3.2) together with (3.1) yields the following important 

relation: 

(3+7r)(3+~)=0, (3.5) 

which is one of the Jacobi identities for D, .4 and ~ -~ .  
There are two further relations which can be conveniently derived at this stage. 

The first, which contains no derivatives or curvature tensor components, follows 
from (NPi) + (NPo)  + (NPr) ,  on using eqs. (3.1): 

0 =  y(rc+ 3+ 2 f l - / 7 -  f)  - ~(rr+ fl) +/~(/~- 2~) + 3/ifl. (3.6) 

The real part is 

/t (2/7- ~+  3+ n) + g ( 2 f l +  r2+ ~ -  ~r) = 0 ,  ( 3.7 ) 

and the imaginary part, which is another Jacobi identity, is 

(/~+/Z) [ (~r- r~) +2  (/~-/7) ] + (y+~)  [ ( 3 -  e ) - 2  (/~-/7) ] = 0 .  (3.8) 

The second equation comes from (NPm) + (NPo) - (NPr),  making use of (3.7): 

28 (y - / z )  = - (Tr+ r~) (y- /~)  + (/~-/~) ( 3 + n ) ,  (3.9) 

which can be integrated if/~ is known. Note that the imaginary part of this is 
consistent with ~t- y being real. 

The next problem is to choose a suitable coordinate x to label the hypersur- 
faces. A common choice in the NP method is to take D = ~ ,  and set p =  

- (u + ia) - ~, which in most cases can be used to define u uniquely. This will not 
work in the present setting since u would be a coordinate in the surfaces we want 
to label and anyway p =  0. We proceed as follows. 
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First let the func t ionfbe  defined by 

6 l og f= f l+ f l ,  (3.10) 

so tha t f i s  unique up to a multiplicative constant. Then let 

6 + ~ = 2 f 0 x .  (3.11) 

G i v e n f  this defines x up to an additive constant, and scalingfproduces a corre- 
sponding scaling ofx.  We can write (NPg) in the form 

( n / f ) ' =  - (~z/f) 2 , 

where the prime means differentiation with respect to x. Provided rc¢ 0, this in- 
tegrates to 

rc=f/ (x +ia) , (3.12) 

where a is a constant which is chosen to be real by using up the freedom to add a 
constant to x. When eq. (3.12 ) is satisfied, (NPp)  is identically satisfied in both 
of the cases implied by eq. (3.5). 

We have assumed above that n~0 .  But if n=0 ,  eq. (3.5) shows that r = 0  and 
(NPf, h, i) show that the solution must be vacuum type N. We shall deal with 
this case separately in section 7.5. From the Bianchi identities, it also follows 
easily that this case is the only one (except for type D) in which the leading non- 
zero 7,A can be constant. 

We can now integrate (B4) for 7'2 (recall that we are assuming E=0):  

7,2 = ( m + i l ) / ( x + i a )  3 , (3.13) 

for some real constants m and l. We have assumed that T= - rc since otherwise eq. 
(3.3) implies that 7,2 = 0. (In other words, the ease z+ n # 0 is included by setting 
m = l = 0 . )  

It is straightforward to integrate (NP1) for fl, using ( 3.13 ), ( 3.10 ) and ( 3.11 ): 

A ( x + i a )  m + i l  
f f l = -  2 4(x+ia)2 +ifl l ,  (3.14) 

where fl, is a constant. Comparing this with 2ff '=2f( f l+fl)  gives a general form 
for f / :  

f 2 = f o  - -A(x2+a 2) + 

wherefo is a (real) constant. 
(NPh) can be written 

m + i l  m - i l  
+ (3.15) 

2 ( x + i a )  2 ( x - i a )  ' 

- (fro)'= xr~+ 7,2 + 2 A ,  

which is only consistent with ( 3.15 ) iffl, is real and 
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2 a f o = - l .  (3.16) 

The only quantities which are still (in principle) undetermined by the equa- 
tions of this section are/z, u, ~u 3 and ~4. We can find/t  by integrating (NPm) 
+ (NPi) ,  and ~v3 then follows from (NPi) .  In general, ~ can be found by inte- 
grating (NPn),  in which case ~P4 follows from (NPj) ,  and (B8) is then automat- 
ically satisfied. However, if ~2 = 0, (B8) can be directly integrated for ~g4, and 
can then usually be obtained without further integration by eliminating Jv  
f rom(NPj)  and (NPn).  It is convenient to define two real functions N(x) and 
n(x) by 

f~=N+in  . (3.17) 

Once the constraints (3.2), (3.6) and (3.16 ) are satisfied, the only remaining 
constraint comes from (NPf) .  

The only remaining freedom in the tetrad and x coordinate is a constant null 
rotation [with imaginary parameter, as in (3.4) ], a constant boost, and the scal- 
ing o f x  (and correspondingly o f f )  by a constant multiple. 

The Bianchi type can be determined from quantities ai and n ij defined in ref. 
[ 6 ], which can be easily calculated from the commutators given in the appendix 
to this paper. The only non-zero components in the triad we are using here are 

a2 = ~ - ~ ,  

n'2=iC2p-2 -r- )/VS, 

a3 = - i ( T + n ) / x / ~ ,  

n ' 3 = - - ( / t + ~  7) , 

n33=ix/~ (z+z~) . 

(3.18) 

To integrate further we have to consider the two cases implied by (3.5) sepa- 
rately. We then consider each Petrov type in turn and finally give a metric form 
which covers all the possibilities found except the type D forms with e ~ 0 (see 
section 5) and the type N vacua (see section 7.5). The various new constants 
which have been introduced have to be evaluated in the different cases. 

To see that the constants in the solution are essential in each case we only have 
to consider the residual constant boost or null-rotation freedom, and rescaling of 
the x coordinate, as our frame is otherwise invariantly defined, unless the solu- 
tion admits several distinct G3's (which would be subgroups o f a  Gr, r> 3). This 
happens if either the solution is homogeneous or the hypersurfaces of homoge- 
neity admit an isotropy; the latter can only arise as a boost in Petrov type D or a 
null rotation in Petrov type N. As a check on this, and to see where the (known) 
type III and N homogeneous Einstein spaces arise within our class of solutions, 
we have used the classification methods described (e.g.) in ref. [20] as imple- 
mented in the computer algebra system CLASSI [ 21 ]. 
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3.1. THE CASE ~'-t- ~z = 0 

We can include the cases where n is real in this section by setting a = 0. 
The constraint (3.2) is identically satisfied, and (NPf)  is satisfied provided 

fo =4a(fl~ - a A ) .  (3.19) 

This, together with (3.16), implies that l=8a2(aA- f l l  ). Equation (BT) - (B6) 
can be integrated immediately, using eq. (3.12 ): 

~3 = (s+it)  / (x +ia) 3 , (3.20) 

where s and t are real constants of integration. (B7) + (B6) then gives 

3/z~2 = (2f l - r t )  ~ 3 . (3.21) 

We can obtain an expression for/z by integrating (NPi) - (NPm):  

x + i a _ ( s + i t ) (  6( x2+a2 ) 1  3 ( x + i a )  z l  ) / z f = ~  x-i----a + ' (3.22) 

where/1o is a constant of integration. This is consistent with (NPi) and (3.20) 
provided 

12a2/zo+S=0 (3.23) 

(so ~ is real ) and it is consistent with ( 3.21 ) provided 

2 i (s+i t )  (fl~ - a A )  = 3 ( m + i l ) ~ .  (3.24) 

One can now deduce that tl+ sm = 0. Setting T+ rt = 0 in (3.9) gives an equation 
which can be integrated independently of/z: 

),= /z+ c(x2 +a 2) -1/2, (3.25) 

where c is a real constant. 
The only remaining constraint is the Jacobi identity (3.8), which in conjunc- 

tion with (3.1) implies that either/Z=), or 2fl+ rc is real, i.e., 

cfl, = 0.  (3.26) 

From ( 3.18 ), we see that the groups of motion are in class B (see ref. [ 6 ], section 
8.2 ) unless c=  0. The conditions that k is a null Killing vector are either a = 0 or 
the solution is of type N. 

We still have to determine v and ~u4, but this can most conveniently be done 
for each Petrov type separately. 

3.2. THE CASE "t'4- ~ =  0 

We assume in this section that rc is not real (since n =  ~ is a special case of the 
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previous section) so that z + n ~ 0  and hence [according to eq. (3.3)], 
~u2=0=m=l. This leads to considerable simplification in the forms for f [eq. 
(3.15) withfo=0 by (3.16), since a~0]  and]/[eq. (3.14)]. Clearly, A<0. (NPf) 
is identically satisfied, and (3.2) gives 

n+  i f -2  (]/+fl) =0 

(since rt# ~), which is also identically satisfied. 
The Bianchi identity (B6) - (B7) can be integrated, giving 

s+it  
~3 = ( x+ia )Z(x_ ia )  , (3.27) 

while (B6) + (B7) gives 

7t3 ( 2 n - i f - 2 ] / ) = 0 .  (3.28) 

As in the previous section, we can integrate ( N P i ) -  (NPm) to get an expres- 
sion for It: 

fit . s + i t (  a ) =ito-l-~-d-i-a2 ~ + t a n - t ( x / a )  , (3.29) 

which is only consistent with (NPi) provided Ito is real and s = 0. Integrating (3.9) 
gives 

~5a2 ( 3a a ) fY=Yo+ 4 t a n - I ( x / a ) +  ~ + x-- ia ' (3.30) 

where Yo is real. 
The only remaining constraints come from eq. (3.6) [cf. ( 3.28 ) ]: 

aAyo + ] /~ (~ -yo )=O , t(]/i - 2 a A ) = 0  . (3.31) 

The groups of motion are all in class B, since z+rt~0,  k is a null Killing vector. 
As in the r + n = 0  case, the only remaining unknowns are ~u4 and v, which can be 
most conveniently found for each Petrov type separately. 

4. Solutions of Petrov type II 

We have ~u2~0 which means that r + n = 0  [eq. (3.3) ]. From (3.7) we see that 
~ (2] / -n )  is imaginary and comparison with (3.20), (3.13) and (3.21) shows 
that ~ is a constant imaginary (or zero) multiple of ~3. The significance is that 
the remaining constant null rotation (3.4) can be used to set ~3=0, in which 
case It=0 by eq. (3.21). Then (3.9) gives 

) ,= yO (X2 + a 2 ) - I / 2  
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for some real constant Yo with Yofl, = 0  from (3.8). Equation (NPn)  reduces to 

[ ( x ' - + a 2 ) N ] ' = - 2 i ( f l - f l )  ( x 2 + a 2 ) n / f - 2 ( a + 2 f l ~  ( x E + a 2 ) f - 2 ) n ,  (4.1) 

n '= - 4 f l l f - 2 N .  

This in general gives second order linear homogeneous equations for Nand  n, the 
latter, if fit # 0, being 

f 2 [ ( x2+a2) f2n ' ] '+8[2 f l~ ( xZ+a ' - )+ a f l ~ f ' - ]n= O.  (4.2) 

Given v, ~4 is determined by (NPj):  

~4 = (r~-n + 2 f f - 6 f l ) N + i (  ~ + rt + 2 f l -6 f l )n  . (4.3) 

If fit =0,  eq. (4.1) can be integrated: 

Vo + vl [ 2 a x + i ( x 2 + a  2) ] 
V= f ( x Z + a 2 )  (4.4) 

The vacuum solutions for the special case l=0=fl~ were given by Harness [ 14]. 
The case with A = y o = l =  v~ = 0  is contained in the solutions given by Bampi and 
Cianci [ 12] as eqs. (2 .5 ) - (2 .9) ,  their % being constant and equal to Vo/m. The 
vacuum solution with a = 0  and yo=0 is given as eq. (4.29) in ref. [ 13] and as a 
special case of eqs. (2 .1) - (2 .4)  in ref. [ 12] *. It is among the special cases of 
Kramer's metric [6, section 21.4] which were considered by van Stockum [26 ]. 

I f a = 0 = A ,  eq. (4.2) for n becomes 

m 2x (xn ' )  '+ 16fl~x4n = O, 

which is Bessel's equation of  order 0 in 2fl~xZ/m, and this solution is given as eq. 
(4.30) in ref. [ 13 ] (with m removed by scaling, and in different coordinates). 

Ifv is zero, we obtain Petrov type D solutions related to the type II solutions in 
the manner described in ref. [6 ], theorem 27. I. 

The groups are of  class A if and only if Yo=0. The class A types are as follows: 
VIII ifaflt vLO (and yo=0);  VIIo if fit =0 ,  av~ <0; VIo iffl~ =0 ,  a=v~ > 0  or a = 0 ,  
fl l~0; II ifflt =0 ,  a = 0  orflt =0 ,  v~=0; I i fa=fl~=v~=O. 

The class B groups (7o~0) have group parameter h given by h - ~ =  
- ( 4 a v t / y o  + I ). The group is of  type VIIh, VIh, IV or III if this expression is 
positive, negative, zero or - l (i.e., v t = 0), respectively. 

In general, the solution has four essential parameters: A, m, a, the two constants 
in n, and either fl, or 7o [see eq. (3.26) ], less the freedom of a constant boost and 
a rescaling of  x. fo is determined by (3.19 ) and l is determined by (3.16 ). The 
cases with a = 0 have three parameters. 

* In ref. [ 12 ], eq. (2.4) contains a misprint: (/z-'/2) should read (g3/2ff). 
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5. Solutions of Petrov type D 

Most of these solutions have already appeared above as special cases of type II. 
Moreover, all of them are well known. For vacuum, the ones with non-constant 
~2 were given by Kinnersley [ 19] as his type IV.A and IV.B metrics, and the 
Einstein space generalizations are included in the metrics of Cahen and Defrise 
[7], which appear as eqs. (11.19) and ( l 1.42), and as eq. (27.41) in ref. [6], 
and they are all included in the forms given in ref. [22 ]. The case with constant 
~2 (which can only happen if n = 0 )  is of the Bertotti-Robinson form; see eq. 
( 10.8 ) and section 10.5 of ref. [6]. The solutions admit a G4 with a one-param- 
eter family of G3 transitive subgroups if ~2 is not constant, and a G6 if ~2 is 
constant. 

We will omit the details of the recovery of  the solutions, noting just the follow- 
ing points. If ~ 0 ~ a  we can set ~=7 and then 8a~2= (l-8a3A)/(x2+a2), un- 
less 1 -8a3A=0.  These are the A generalization of K.innersley case IV.A and the 
groups G3 are of type III. The same is true if l -  8a 3A---= 0, but we then have y= 0 # e. 
This family of  solutions also occurs as the type D specializations in section 4 with 
a # 0 ,  in the form of solutions with e = 0  and groups of type VIII, VIh or II. The 
metric forms are type (B2) and (B3) in ref. [8]. I f e # 0 = a  the solutions are the 
generalizations of Kinnersley's IV.B, again with groups of type III, which are al- 
ternatively obtained with e = 0 in terms of  G3 subgroups of types III or I (section 
4 with fit = a = 0 # 7o) or VIo (section 4 with a = 0 # fll ). The metric forms are case 
(BI)  in ref. [8]. 

6. Solutions of Petrov type III 

We now have ~v 2 = 0 # ~v3. The possibilities r +  n = 0 and r +  r~= 0 can both arise. 
Equation (3.15 ) becomes 

f 2 = p 2 ( x 2 - I - a Z )  , (6.1)  

where p2 = - A ,  becausefo vanishes for both possibilities [consider either (3.16 ), 
i f a # 0 ,  or (3.19) ]. 

Despite there being no case with ~v 3 constant in our standard tetrad, there is a 
special subcase which is four-dimensionally homogeneous, and we discuss the 
relation of  this to the other cases in a final subsection below. 

6.1. PETROV TYPE III SOLUTIONS WITH "t'+ 7t= 0 

In this case 2f l=n from (3.21), so fl~=aA. The Jacobi identity (3.8) can be 
written, using (3.9), as ac=O. (B8) can be solved for ~4: 
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K 
P27"4 = (x_t_ ia) 3 

. ( ( s+ i t )  6 / 1 o  2 c t a n - l ( x / a ) ~  
+(S+l t )  ( x + i - ~ ( x - - - i a )  -- (x+ia)3(x- - ia )  + a--~+i--a-~ J '  

where K is a complex constant. A (messy) expression for v can be obtained alge- 
braically from 7'4 by solving (NPn) + (NPj); we omit the result, though we have 
obtained and checked it with the help of REDUCE [23]. 

There are three essential parameters when a 4: 0: A, a or Yo, s and t less the co- 
ordinate rescaling. [Kcan be made real or imaginary by using the remaining null- 
rotation tetrad freedom, then scaled to 0, 1 or i by means of the remaining boost, 
and/1o is fixed by ( 3.23 ). ] The group is of Bianchi type VIII. 

If a = 0  we have s = 0  from (3.23) and we can obtain a relatively simple form 
for v and 7"4: 

lP= (YO + flo) ( 21to/X2 + it/3X4) /P 3+ ~o/X3 + i p t / x  , (6 .2 )  

7"4 = - 2p Vo/X 3 _ t "-/p'-x 6 -  2i ( 21~o + Yo) t/P 2x4 , 

where Vo and Vl are real constants and K = - 2 V o p  3. The Petrov type III four- 
dimensionally homogeneous case occurs when Yo + 4 ~  = 0 = yr. 

The group is in class B if and only if p-oSYo. These a = 0  solutions have the 
following group types: i f ~  + Yo S 0 (the general case), type VIh, where 

h =  - [ (yo - U o ) / ( ~ o  + # o )  ]2 ; 

if y o + ~ = 0 S Y o - / t o ,  type IV (if vt S0 )  or type V (if vt =0 ) ;  if yo=/ZoS0, type 
VIo; and if y o = ~ = 0 ,  type II (if vl 4=0) or type I (if v t=0) .  There are three 
essential parameters: A, t, Yo, ~ ,  and Vl less the boost and rescaling freedoms. The 
Bianchi type VIh, IV, V and VIo solutions with a = 0 were independently rediscov- 
ered by Harness [ 14]. 

6.2. PETROV TYPE III SOLUTIONS WITH T-F ~ =  0 S Im (~t) 

In this case (3.31) implies fll =2aA and 2p-o= yo. The null rotation can be used 
to set yo=0. Using (3.29) and (3.30) in the remaining equations (B8), (NPj) 
and (NPn),  we can arrive at lengthy expressions (obtained and checked with the 
help of REDUCE) for v and 7"4, the latter being: 

t 2 
A(x+ia)47"4=K( x - i a ) +  a 3 ( x _ i a )  

× ( ' -  3ix3+ 3x2a+l 2 ( x -  ia) 2 lixa 2 + 23a3 + (x+ia)2 tan - ' ( x / a ) )  . 

The group is of Bianchi type VI_ t/9. There are three essential parameters: A, a, t 
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and the two in ~4, less the boost and rescaling freedoms. For K = 0 ,  we recover 
the four-dimensionally homogeneous case. 

6.3. THE HOMOGENEOUS PETROV TYPE III SOLUTION 

The four-dimensionally homogeneotis Einstein space of  Petrov type III appears 
as eq. (10.34) in ref. [6] and eq. (4.9) in ref. [ 10] *, it seems to have been first 
given by Kaigorodov [24 ]. Here we can obtain it as described in the previous 
two sections. 

The full G4 group of  motions of  this solution is of  type A 4 ~/4'- ~/2 in the classi- 
fication ofref.  [25 ], and from that paper we can extract a list of  the G3 subgroups, 
up to conjugacy. We find groups of  type VI_l/9 on surfaces which contain the 
repeated principal null direction (as found in section 6.2 ) and surfaces which do 
not, and groups of  types VI_(7/3)2 and I acting on surfaces containing the re- 
peated principal null direction. These last two arise as described at the end of  
section 6.1, the group depending on whether )'o ~ 0 or 7o = 0. Thus we find that 
each type of  G3 subgroup has been recovered either here or in ref. [ 10 ], and the 
representations of  the homogeneous case arising in the present paper each occur 
in a multi-parameter family of  solutions with less symmetry.  

7. Solutions of Petrov type N 

Here ~4 is the only non-zero ~A. If  ~4 varies, both possibilities, z+Tt=0  and 
z+  r~=0, arise and (6.1) then holds, as in Petrov type III. The a = 0  solutions can 
be derived as limits of  the general z+Tz=0 case, but this is rather messy and it is 
simpler to discuss them separately, which we do in section 7.3. The special case 
3= 7t= 0, giving vacuum solutions, can also occur and is treated in section 7.5. 

By the arguments in section 3, ~4 is constant only if  r e = t = 0 ,  which leads to 
plane waves (see section 7.5). However, there is a non-vacuum four-dimen- 
sionally homogeneous solution, which in fact admits a Gs, and we discuss the 
relation of  this to the families with a G3 in section 7.4. 

7.1. PETROV TYPE N METRICS WITH ~" + ~z = 0 :/: Im (rr) 

In this case section 3.1 gives the following constraints: 

a(fl~ - a A  ) =0,  a 2 ~ = 0 ,  cfl~ =0.  

Thus with a # 0 ,  we have 7 = # = 0 .  We find 

gJa = K /  ( x + i a )  3 , 

(7.1) 

* In both cases, with a misprint: in ref. [ 6 ] the dz dy coefficient should be - 8ue 2:, and in ref. [ 10 ] 
there are incorrect factors of 2. 
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where K is a complex constant, and 

x E + a  2 (K(x+5ia) 
v= 24aZf \. ~-~i--- ~ (x-~a)2) " 

The group is of type VIII, as in the corresponding Petrov type II and III solu- 
tions, and there is one essential parameter, which can be taken to be A, since a 
and K can be set against the null-rotation, boost and coordinate scaling freedoms. 
Thus for given A there is only one solution in this class. The metric is of type 
(C3) in ref. [8] and admits a G4. It also appears as the Einstein space on the line 
labelled A_2(x, y) in table 1 of ref. [15]. By applying a null rotation (with pa- 
rameter 2iapv in the coordinates of section 8 ) it can be transformed to the form 
of a solution with z+ z~= 0 and a group of Bianchi type III, the opposite sign of a 
and fll = 0. 

7.2. PETROV TYPE N SOLUTIONS WITH "•-t- 7~= 0 ~= I m  (zc) 

The constraints of  section 3.2 do not restrict fl~. Iffl~ ~ aA, we can use the null- 
rotation freedom to set Po = 0 and then (3.31 ) implies y = 0. We consider fl~ = aA 
separately. 

From (B8) we obtain 

K (x+ia~ -2''/~ (7.2) 
~ 4 -  (x_ i a )3  \ x - ia /  

where K is a complex constant, and this defines v uniquely, via the combination 
of (NPj)  and (NPn) ,  except in the case fl~ = 3aA/4. We omit the resulting messy 
formula. If ill = 3aA/4, then K must be real but a second constant of integration 
still appears in v. These solutions appear as the Einstein spaces on line As(x, y) 
in table 1 of ref. [ 15 ]. 

The group is of type VIh, where h = - [ a A / ( a A -  2fl~ ) ]2, unless fl~ = aA/2, when 
it is of type IV, and there are three essential parameters: A, a, two in K (or Kand  
the constant in v iffl~ = 3aA/4) and ill, less the boost and coordinate scaling free- 
doms. As mentioned above, the special case fl~ = 0  (with a group of Bianchi type 
III) admits as maximal symmetry group a G4. The case fl~ = 5aA/4, with K real, 
gives the type N homogeneous solution written in terms of a group of type 
V I -  (2/3)2. 

When fl ,=aA, eq. (3.31) gives p = 0  and (3.30) becomes Y=Yo/f. ~4 is still 
given by (7.2), but (NPn)  and (NPj)  imply that Kis  real. The group is of  type 
III, and there is one essential parameter: A, a, K, and ~o less the null-rotation, 
boost and coordinate scaling freedoms. 
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7.3. PETROV TYPE N SOLUTIONS WITH z + / t =  0 = Im (zt) 

As a = 0, fl~ is no longer constrained by (7.1). As in section 7.2, if,8, ~ 0 ( = a,4 ), 
c=0  and we can use the null-rotation freedom to set y = p = 0 .  In this case (B8) 
yields 

~/;4 = K x -  3e --4i.&lA-~: 

[cf. eq. (7.2)],  where K is a complex constant, and v can be found from 
(NPj) + (NPn). The group has type VIo, and there are two essential parameters: 
A, K and fl~ less the boost and scaling freedoms. These solutions appear as the 
Einstein spaces on line A(x)e  ~ in table 1 ofref. [ 15 ]. 

The other case, B~ = 0, is a specialization of section 6.1: 7;4 = K/x 3, where K is a 
real constant, and we must take t=0 ,  vo=K/2p. These solutions appear as the 
Einstein spaces on line u-2~-2A (xu p) in table 1 of ref. [ 15 ]. The group types 
possible are just as in section 6.1, and, with K replacing t, so is the parameter 
count. These solutions all admit a G4, the additional symmetry being a null rota- 
tion in the orbit of the G3, and are four-dimensionally homogeneous (admitting 
a Gs) if y o = ~ = 0 ,  giving the homogeneous solution in the form of a solution 
with a G3 of Bianchi type I or II. The cases 5/1o= -37o and 5/Zo= -2::0 also turn 
out to be homogeneous, presenting the homogeneous solution in the form of one 
with a group of type VIh where h =  - 16 or h =  - (7/3)2, respectively. (Note that 
the latter type does not arise in the same way as the group of the same type in the 
homogeneous type III solution! ) 

This second subset of solutions are in fact those specializations of the solution 
of Barnes [ 9 ] which admit a (74 containing a simply transitive G3. Barnes' solu- 
tion was given in the form 

ds2= Od2( - 2  d u  dvq- d y 2 +  2(~ dr/2)  +d .x  "2 , 

where A=CCX/u, E=eo(u)e -sxc, c 2 = - 2 , 4  and Co(U) is an arbitrary function of 
u. It is the general solution for an Einstein space submitting a G3 acting on two- 
dimensional null surfaces. For certain Eo (u) it admits a G4. The relevant metrics 
are the Einstein space solutions of the forms (CI)  and (C2) of ref. [8], which 
include some metrics with no simply transitive G3. Using the methods described 
in ref. [ 20 ] we have been able to identify the various subcases in ref. [ 8 ], includ- 
ing those where the G4 does not contain a simply transitive G3. 

7.4. THE HOMOGENEOUS PETROV TYPE N SOLUTION 

The four-dimensionally homogeneous metric is, like the type III homogeneous 
case, due to Kaigorodov [24], and is eq. (10.33) in ref. [6] and eq. (4.8) in ref. 
[ 10]. The full group is a G5. Following the methods of ref. [25], we find the 
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following subgroups G3: groups of type V I _ t / 9  acting on spacelike surfaces (as 
found in ref. [10]),  and groups of  types I, II, V1_(2/3)_, , V1_(7/3)'- and VI_~6 
acting on timelike surfaces containing the repeated principal null direction. All 
these groups, except for those of type VI_t2/3).,,  arise from the specializations 
described in section 7.3, the remaining cases arising in section 7.2. The solution 
admits a G3 acting on two-dimensional null surfaces and is a special case of Barnes' 
solution (see section 7.3 ) and of ref. [ 15 ]. As with the Petrov type III homoge- 
neous solution, all its manifestations among the solutions found here occur as 
special cases of a multi-parameter family. 

7.5. PETROV TYPE N (VACUUM) SOLUTIONS WITH "c----7t----0 

These vacuum solutions are all in principle known (due to Kundt) ,  and are pp- 
waves (see ref. [6], section 21.5). All we are doing is thus specifying which of 
the known solutions have a G3 acting on timelike surfaces containing the repeated 
PND. The coordinates of the previous sections no longer work; instead we choose 
an x coordinate so that 8+ ~= 2Ox. The equations of the first half of section 3 still 
hold, but the integrations must be redone. To start with, (NP1) leads to two pos- 
sibilities: either fl= 0 or Re (fl) = 1/2x. 

The first of these possibilities leads to plane waves (see section 27.5 of ref. 
[ 6 ] ), and a short calculation shows these have groups G3 on timelike surfaces of 
Bianchi type VIh, VIo, IV, V, II or I; Harness [ 14 ] recovered the first four of these 
forms. 

The second possibility corresponds to the second case discussed in ref. [6 ], 
section 27.5.1. We have f l = l / 2 x + i f l t / x ,  and integrating (NPm) gives 
/ t= (/2o+iyt)/x. Then (3.9) determines y up to a real constant: y=/z+yo where 
/2o + 2fit Yl = 0, according to (3.7). We can always use a null rotation to set Yt = 0, 
in which case/to = 0 (and hence/~ = 0 ) also. The only remaining constraint Yoflt = 0 
comes from the Jacobi identity (3.8). Finally, we can integrate (NPn) and (NPj): 

~/4 : K _ ~  - 2 - 4 i f l l  ' v = - -  ~v4/(2-t- 8iflt) , 

for some complex constant K. The group is of type VIo if 7o# 0 or II otherwise. 
There are two essential parameters: 70 or fit and K less the boost. 

8. The metric 

All our solutions must be in Kundt's class (see ref. [6], ch. 27) but could in 
most cases only be given implicitly or in a messy way in the canonical coordinates 
of ref. [6], eq. (27.7). The coordinate choice. (3.11 ) corresponds instead to a 
variable like the z of ref. [6], eq. (27.41), used to express the type D metrics in 
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Kundt's form *. The type D and type N vacuum metrics are already covered by 
the metric forms of ref. [6 ], section 27, so we have only to give a metric form for 
the cases with E = 0 ~ n. 

It is guaranteed, since we have solved the NP equations, that we can find a 
metric form (see section 2.2 ); starting from (3.11 ), and introducing coordinates 
successively for D, 3 -  ~-and A, we find we can cover all cases by 

k = x / ~ 2 + a  2 e 4ky du ,  

l = ~  [dv+ (aft, v - G )  dy 
+ ( H +  G2/aA + 2p.o G y / p +  2aqvG + 2p vt y + 2yo v / p -  4akqv 2) e 4kj, du ] , 

m = d x / 2 f +  i f  [ dy+  ( - G/2A - 2 a q v -  2p.oy/p) e 4ky du ] ,  (8.1) 

w h e r e k = f l , - ( l - q ) a A ,  q = 0  if t+ r~=0  and q = l  if t+ rc=0 ,  and G and H a r e  
functions o f x  related to the spin coefficients by 

G = i  ~ / ~ f ~ - 2  ' H =  2f  = N / f  2 d x .  

This possibility is connected with theorem 27.1 of ref. [6], which shows how 
different solutions in Kundt's class are related by functions obeying certain linear 
equations. G is always taken to be 0 if g=0 ,  and in fact is chosen non-zero exactly 
in the Petrov type III metrics. 

The terms in (8.1) in which ~'o,/to and vt appear explicitly can be eliminated, 
respectively, by choice of the constant in G and a coordinate transformation if 
ft, + qaA # 0, by the same method if//, # 0 also, and by choice of the constant in H 
ifft, + k#  0. The exceptional cases requiring all three parameters are thus those of 
section 7.1 with a = 0  and of section 7.3 with ft, =0. ~'o and Vl are also required in 
the cases of section 4 with ft, =0,  and ~'o in the cases of section 7.2 with ftt =aA 
(taking G=0) .  

Finally, the function H has the value - (n+2aGE) / a f t~  [see (3.17)] in the 
following cases: section 6.1 if a # 0; section 7.1; section 7.3 ifftt # 0; and section 4 
if//, 4:0 [H then obeys (4.2)].  In section 6.2, H = -  ( n +  3aG2/2) /6Aa.  In sec- 
tion 7.2, n = H ( 2 a A - a f t t  ) (which has a special case when fl, =aA/2) .  These re- 
suits arise from the coupling of equations for Nand n in (NPn) [see, for example, 
(4.1) ], and only in the exceptional cases where this coupling is broken does one 
have to integrate for H separately from n. These exceptions are: section 4 with 
ft~ = 0; section 7.1 with a = 0; section 7.2 with ft, = aA/2; and section 7.3 with ft, = 0. 

9. Summary and concluding remarks 

Most of  this paper has been an exercise in deriving solutions using the 
Newman-Penrose  formalism in the now classic manner. As a result of  the calcu- 

This relation is misprinted in ref. [6]: it should read P2dz=dx. 
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lations here together with those of ref. [ 10 ] and earlier results given in ref. [ 6 ] 
we can now present a complete list of all solutions covered by our title. We have 

1. the spaces of constant curvature: Minkowski, de Sitter and anti de Sitter, 
each conformally fiat and with a Glo, containing numerous G3; 

2. homogeneous plane waves, with A = 0, of Petrov type N with a G6 containing 
G3 of types VI, IV or VII; 

3. the metric of Bertotti-Robinson form, of Petrov type D with a G6 containing 
G3 of type III; 

4. the homogeneous Petrov type N solution with A <0  and a G5 containing 
various G3 (see section 7.4); 

5. the homogeneous Petrov type III solution with A < 0 and a G4 containing 
various G3 (see section 6.3); 

6. inhomogeneous plane waves of Petrov type N and within a Gs; 
7. the generalized Taub-NUT solutions with a G4 acting on spacelike surfaces 

and various G3 subgroups [ 6,10 ]; 
8. a Petrov type III solution with a G3 of type VI_l/9 [ 10]; 
9. Leroy's twisting Petrov type N solution with a G3 of type VI_ 1/9 [ 10 ]; 
10. the twisting Petrov type III solution with a G3 of type VI_ ~/9 [ I0 ]; 
11. a Petrov type II solution in Kundt's class with a G3 of type VI_ 1/9 [ 10]; 
12. Petrov type D solutions analogous to the Taub-NUT solutions (see section 

5); 
13. for each A, a three-parameter family of Petrov type II solutions with a G3 

of type VIII (see section 4); 
14. for each A, a two-parameter family of Petrov type II solutions with a G3 of 

type VIo (see section 4); 
15. for each A, a three-parameter family of Petrov type II solutions with G3 

generally of type VIh or VIIh (see section 4); 
16. for each A, a two-parameter family of Petrov type II solutions with a G3 in 

general of type III (see section 4); 
17. for each A < 0, a two-parameter family of solutions of Petrov type III with 

a G 3 of type VIII (see section 6.1 ); 
18. for each A < 0, a two-parameter family of Petrov type III solutions with a 

G3 of one of various types, in general type VIh (see section 6.1 ); the family con- 
tains the homogeneous solution; 

19. for each A < 0, a two-parameter family of Petrov type III solutions with a 
G3 of type VI _ 1/9 (see section 6.2 ); the family contains the homogeneous solution; 

20. for each A < 0, a solution of Petrov type N with a G4 containing a G 3 of type 
VIII and G3 of type III (see section 7.1 ); 

21. for each A < 0, a solution of Petrov type N with a G3 of type III (see section 
7.2); 

22. for each A < 0, a two-parameter family of Petrov type N solutions with a G3 
of type VIh (see section 7.2); this family contains the homogeneous solution; 
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23. for each A < 0, a one-parameter family of Petrov type N solutions with a G3 
of type VIo (see section 7.3); 

24. for each A < 0, a two-parameter family of Petrov type N solutions admitting 
a G4 containing a simply transitive G3 of various possible types, or no simply 
transitive G3 (see section 7.3 ); this family contains the homogeneous solution in 
several forms; 

25. a two-parameter family of Petrov type N vacuum pp-wave solutions with a 
G3 of type VIo (see section 7.5 ); 

26. a two-parameter family of Petrov type N vacuum pp-wave solutions with a 
G 3 in general of type VIo (see section 7.5 ). 

It is worth remarking that the set of  all Einstein spaces with hypersurface ho- 
mogeneity has only five essential parameters (including A), so the existence of 
two four-parameter type II families shows that the restriction to algebraically spe- 
cial solutions loses only one degree of freedom. 

It is apparent that there are strong similarities between the metrics of differing 
Petrov types found here [ since they are all included in (8.1) ]. For example, we 
think it highly probable that one can pass from the type II solutions to the similar 
type III and type N solutions by a limiting procedure, with an infinitely large null 
rotation compensating for the m and l of  (3.13 ) tending to 0. The solutions are 
also related in the way described by ref. [6], theorem 27.1. We have not worked 
out the details of  these relationships. 

We are grateful to Dr. G.C. Joly for help with the metrics of Bampi and Cianci 
[ 12 ], and to these authors for helpful correspondence. We also thank the authors 
of REDUCE and CLASSI, which speeded up our calculations considerably, and our 
institutions, the Central Research Fund of London University, and the Science 
and Engineering Research Council for computing equipment used in this work. 

Appendix. The NP equations 

& = e ( f l - / 7 -  r~) , (NPe) 

0 = 2 ( f +  n ) f l -  3 e y - ~  + r n +  7"2 - A ,  (NPf)  

- r n =  ( n -  f l - f l ) n  + 2Elt , (NPg) 

- ~ n = r t ( ~ + f l + f l )  - 2~/z+ ~ + 2 A ,  (NPh) 

0 = 2  ( n +  f)/z+ ( ~ , - 7 ) n - 4 E v +  7'3 (NPi) 

- B y =  (/z+fl)/t+ ( 3 y - ~ ) / t +  ( - 3 f l + f i + r t -  f ) v -  7"4, (NPj) 

-2~f l=2f l f l+  2fl2+ e ( y - y ) -  ~_, + A ,  (NP1) 
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- 2611 = 7t ( y -  ~) + 211 ( f l+f l )  - ~3 ,  ( N e m  ) 

6v= / t2+ /4a+  ( y + ~ ) l Z - ~ n +  ( r -  3fl+/7)v, (NPn)  

6Y = ( r + / ~ -  fl)y+ p r -  e#+ 2tif f ,  (NPo) 

6 r=  ( z + f l + f l ) r ,  (NPp)  

- r z =  (f l+ f l -  f ) z -  ~,_ - 2 A ,  (NPq) 

- r y = e v +  ( z + f l ) l t -  (~ - f i )~+  ( f l -  f ) y -  T3 , (NPr)  

3p~V2=0, (B3) 

d;~v2 = 3z~v2, (B4) 

- 6kU2 = - 2c~u3+ 3n~u2, (B5) 

_ 6~u3 = 2 ( f l -  z) ~'3- 3/z ~u_,, (B6) 

6~3 = 4E ~4-- 2 (2re-- fl) ~v3-- 3/t ~_,, (B7) 

- 6 ~ 4 =  ( 4 f l - Q  ~ 4 - 2  (2/ t+y)  ~3+3 v~_,, (B8) 

[,d, 6 - d ]  = ( # - v  ) D -  ( z -  f - 2 ( f l - f l )  ) A -  ( l t+.a) ( 6 - t ~ )  , 

[ 6 - ~, D l = ( rr - ff + 2 ( fl - f l  ) ) D , 

[D, A] = - ( y + 7 ) D -  ( ~ + ¢ ) A +  (7t+¢) ( 6 - 8 )  , 

[ 6 + ~  A] = -- ( v + # ) D +  ( r +  f ) A -  (y -~ )  ( 6 - 6 ) ,  

[6+~, D] = - ( n + g ) D ,  

[6+ $, 6 - ~ ]  = 2 ( y - f ) D - 2 ( f l + f i )  ( 6 - ~ ) .  
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